

Pressure Reducing Valve PRV425 general situation

The PTV PRV425 is internally piloted piston-operated pressure reducing valves. It is pilot-controlled for accurate regulation of pressure under widely ranging flow. The internal-pilot design eliminates external components and piping. Internally piloted PRV425 valves are capable

of larger capacity and greater accuracy than direct-acting valves. Internally piloted PRV425 valves are rated for dead-end service and have a 20:1 turn down ratio and an accuracy of ±0.5 Bar of set point.

It mainly composed of main valve and pilot valve. The main valve consists of valve seat, main valve disc, piston, cylinder sleeve, and spring. The piston valve consists of valve seat, plug, membrane, spring and adjusting spring. Set the outlet pressure through adjusting spring, sense the change of pressure of outlet with membrane, adjust the flow area of throttling part of main valve through open and close of pilot valve and drive the piston, to realize the function of reducing and regulating valve. The product is mainly applied on steam or fluid piping, to reduce and regulate the pressure.

Completely supported by piping, lightweight PRV425 valves install easily with NPT or flanged connections. A stainless steel diaphragm, hardened stainless steel working parts and integral removable strainer team up to provide higher performance over a long, trouble-free Valves are equipped with a caged main valve assembly (separate shutoff surfaces and flow-control ports), piston valve rings for longer life, service life.

and an external adjusting screw with locking nut and cover. All working parts are renewable in-line.

Internally Piloted

This type of PRV incorporates two valves-a pilot and main valve-in one unit. The pilot valve has a design similar to that of the direct-acting valve. The discharge from the pilot valve acts on top of a piston, which opens the main valve. This design makes use of inlet pressure in opening a large main valve than could otherwise be opened directly. As a result, there is greater capacity per line size and greater accuracy than with the direct-acting valve. As with direct-acting valves, the pressure is sensed internally, eliminating the need for an external sensing line.

Main Difference between Pilot and Non Pilot Operated

Direct Acting (Non-piloted)

Used for small loads where extremely close pressure control is not needed. Pros: Compact size, low price, easy to install. Cons: Higher droop (variation from set pressure) than Pilot-operated PRV.

Pilot-Operated (Internally piloted PRV425 series, externally piloted DP143 series)

Used for larger loads where close pressure control is required Pros: Close pressure control, fast response to load variation, may be used across a broader range of flow rates than the direct acting types.

Cons: Larger size, higher price.

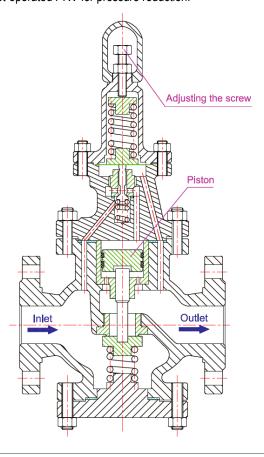
From the above characteristics, it can be seen that the function and applications of non-piloted direct acting PRVs differ substantially from those of pilot-operated PRVs.

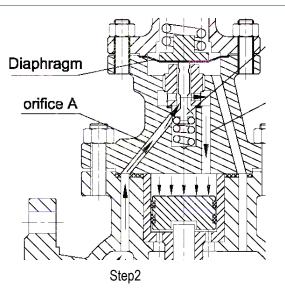
In short:

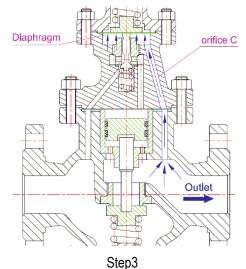
 Direct-operated valves are used when loads are small and some down stream pressure droop may be accepted. They are generally used in light load services.

 Pilot-operated pressure reducing valves can respond quickly to varying load conditions while maintaining stable secondary pressure where precise pressure control is needed. They are generally intended for larger load applications..

Typical Applications in a Steam-Using Plant:


• Small load applications such as sterilizers, unit heaters, humidifiers, and small process equipment may typically use a simple Direct Acting PRV for pressure reduction.


In case of larger flows, such as steam distribution piping, loads may fluctuate greatly depending on the operational status of the recipient equipment. Such load variations and large capacity would call for the use of a Pilot-operated PRV to reduce pressure.
 Furthermore, the amount of steam used by certain equipment at start-up may differ significantly from the amount


required during normal operation. Such wide variations may also necessitate the use of a Pilot-operated PRV for pressure reduction.

How it works

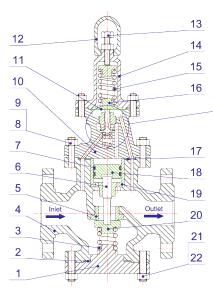
When the pressure reducing valve is released from the factory, its adjusting spring is in an uncompressed state while its main valve and pilot valve disc are in the closed state. To use it, rotate the adjusting screw clockwise to compress the adjusting spring and make the diaphragm move down to open the pilot valve disc. The medium flows from the orifice A to the orifice B through the pilot valve seat and then into the area above the piston. Acted by the medium pressure, the piston moves down to drive the main valve disc to leave the main valve seat and make the medium flow to the outlet of the valve and meanwhile through the orifice C and into the area below the diaphragm. When the outlet pressure exceeds the set value, it will push the diaphragm upwards to compress the adjusting spring. Then the pilot valve disc will move in the closed direction to reduce the medium flowing to the area above the piston, and the pressure will drop as well; here the main valve disc will be pushed by the main valve disc's spring force to move upwards to reduce the clearance between the main valve's disc and seat while the medium flow will reduce as well and the outlet pressure will also drop to strike a new balance. Contrarily, when the outlet pressure is lower than the set value, the clearance between the main valve's disc and seat will increase and the medium flow will increase as well so that the outlet pressure will increase to strike a new balance.

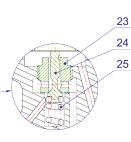
Features:

- A)Self-acting using spring and piston operation no need for electrical supplies.
- B) Internally piloted piston-operated.
- C) Self-aligning feature allows the piston to move smoothly, resulting in accurate responsive control.
- D) Stable outlet pressure can be maintained, even with fluctuations in upstream pressure or flow rate.
- $\mathsf{E})$ Accurate control of pressure with one spring.
- F) Stainless steel internals for excellent durability and resistance to corrosion.
- G)Wide range of screwed and flanged connections to match plant standards.
- H) Metal-to-metal seat

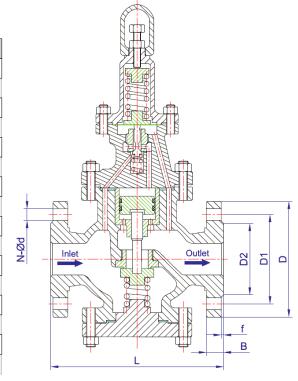
Performance Standard

- 1. Design & Manufacture standard as to: ASME PTC 25.3 / ASME B16.34
- Face to Face dimension standard as to: MFR-STD
 Flange dimension conforms as to: ASME B16.5 / BS EN 1092
- Threaded Standard as to: NPT : ASME B1.20.1 BSP : ISO 7-2: 2000
- 4. Testing and inspection as to: API 598 / ASTM E 1008-2003
- 5. Pressure-temperature conforms as to: ASME B16.34
- 6. Anti Corrosion as per NACE MR-0175(2002) requirement


Technical Data


- 1. Size range NPT: 1/2" ~ 2" RF: 1/2" ~ 16"
- 2. Body design conditions: 150LB / 300LB / PN16 / PN25 / PN40
- 3. Maximum inlet pressure: 300LB / PN40 : 50 Bar @ 40° C
 - 150LB / PN25 / PN16: 25 Bar @ 40°C
- 4. Maximum design temperature: 350℃@ 24 Bar
- 5. Minimum design temperature: -29°C
- 6.Outlet Pressure Range: 300LB / PN40 : ~20°3Bar 150LB / PN25 / PN16: 316 Bar
- 7. Maximum operating temperature: 325°C@ 24 Bar Maximum temperature instantaneous : 425°C
- 8. Outlet pressure deviations: ≤±0.5 Bar
- 9. Differential pressure between inlet/outlet: 2 Bar
- 10. Suitable Medium: Suitable for steam, gas, compressed air. etc

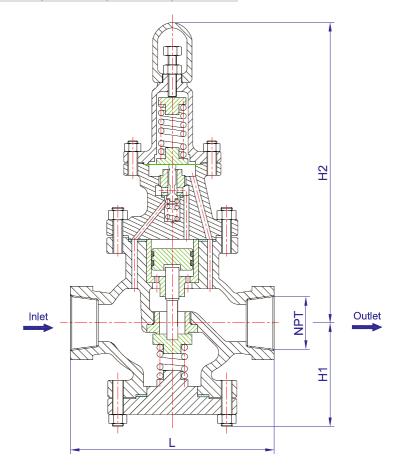
Part List: Part Name Standard No. Material WCB Bottom Cover ASTM A216 1. Bottom Gasket 2. SS316+Graphite ASTM A276 / ASME B16.20a Main Valve Spring 3. 60Si2Mn EN 10089 2002 Main Valve Body 4. WCB ASTM A216 Main Valve Seat SS410+Stellite.6 5. ASTM A276 Push rod б. SS410 ASTM A276 **Piston Ring** 7. Ductile Iron K9 ASTM A536 Pilot Valve Housing Bolt 8. B7 ASTM A193 9. **Pilot Valve Housing Nut** 2H ASTM A194 10. **Pilot Valve Housing** WCB ASTM A216 11. SS304 Diaphragm ASTM A276 Тор Сар 12. PVC MFR-STD Adjusting Screw B7 13. ASTM A193 14. WCB Spring Chamber ASTM A216 15. Adjusting Spring 60Si2Mn EN 10089 2002 A105 16. **Bottom Spring Plate** ASTM A105 17. Gasket SS316+Graphite ASTM A276 / ASME B16.20a SS410 18. Piston ASTM A276 19. SS410 Cylinder ASTM A276 Main Valve Disc SS410 20. ASTM A276 Bottom Bolt 21. B7 ASTM A193 22. Bottom Nut 2H ASTM A194 23. Pilot Valve SS304 ASTM A276 24. Pilot Valve Disc SS304 ASTM A276 25. **Pilot Valve Spring** 60Si2Mn EN 10089 2002



Main Dimensions:

Pressure Reducing Valve PRV425 Flanged ends RF ASME B16.5 300LB

1											
	NPS	L	D	D1	D2	В	n-Фd	f	Weight Kg		
	1/2″	180	Ф95	Ф66.7	Ф35	13	4-Φ16	2	13		
	3/4″	180	Φ115	Ф82.6	Ф43	14.5	4-Φ19	2	13		
	1"	200	Φ125	Ф88.9	Φ51	16	4-Φ19	2	16		
	1 1/4"	220	Φ135	Ф98.4	Ф64	17.5	4-Φ19	2	26		
	1 1/2"	240	Φ155	Ф114.3	Φ73	19.5	4-Φ22	2	32		
	2"	270	Φ165	Φ127	Ф92	21	8-Ф19	2	42		
	2 1/2"	300	Φ190	Ф149.2	Φ105	24	8-Ф22	2	56		
	3"	330	Φ210	Ф168.3	Φ127	27	8-Ф22	2	71		
	4″	380	Φ255	Φ200	Φ157	30.5	8-Ф22	2	80		
	5″	450	Φ280	Φ235	Φ186	33.5	8-Ф22	2	130		
	6"	500	Ф320	Ф269.9	Φ216	35	12-Ф22	2	165		
	8"	550	Ф380	Ф330.2	Φ270	40	12-Ф25.5	2	220		
	10"	650	Φ445	Ф387.4	Ф324	46.5	16-Ф29	2	310		
	12"	800	Φ520	Ф450.8	Ф381	50	16-Ф32	2	495		
	14"	850	Φ585	Ф514.4	Ф413	52.5	20-Ф32	2	740		
	16"	900	Ф650	Φ571.5	Φ470	56	20-Ф35	2	950		



Main Dimension of Pressure Reducing Valve PRV425

Threaded ends NPT PN16 / PN25 / PN40

NPS	NPT	L	H1	H2	Weight (Kg)
1/2″	1/2″	140	90	295	7.5
3/4″	3/4″	140	98	330	9
1"	1"	160	110	330	12.5
1 1/4"	1 1/4"	180	110	330	15
1 1/2"	1 1/2"	200	125	345	20
2"	2"	230	125	345	25

SBM PTV Engineering Data

CV Values of PRV425

NPS	2″	2,5″	3″	4″	5″	6″	8″	10″	12″	14″	16″
CV	1	2.5	4	6.5	9	16	25	36	64	100	140